Scroll

Created with Pixso.

Top

Created with Pixso.
News header image

I-MAXIMUM at LPG WEEK 2023 in Rome

date

01.07.2025

eye

0

From 13 to 17 November was held The 35th World LPG Forum and European Liquid Gas Congress were jointly organized by the two main trade associations, the worldwide WLPG and the European Liquid Gas Europe.

 
At the exhibition, Korea Gas Engineering (KGE) presented LPG vaporizers. All models of LPG vaporizers are certified in accordance with EU directive standards and can be legally utilized within the European Union.

team

The participants of the exhibition showed great interest in the KBV vaporizers with the indirect vaporization process of liquid-phase LPG by heating the heat exchanger (glycol) using a flame from a burner in a closed combustion chamber. This model of LPG vaporizers replaces the installation of water LPG vaporizers along with boilers for hot water circulation.

 

LPG is also very important in the search for solutions that can be applied on a large scale since it is versatile, can be used in a variety of different industries and is easily transportable, making it accessible in any part of the world without the need for complex infrastructure. This specific aspect plays a key role in rural or developing areas – as was repeatedly mentioned – where use of this fuel has meant, and still means, a significant improvement in terms of quality of life, safety, and a decrease in pollution.

 

Besides the intrinsic advantages of LPG, which were once again loudly reiterated, ample space was also devoted to innovations, particularly to the new renewable fuels such as Bio-LPG. It is chemically identical to conventional LPG but made from sustainable raw materials like plant and animal waste, vegetable oils and biogas. In addition to not being made from fossil fuels, it also has the great advantage that it can be deployed using the existing infrastructure and systems currently utilized for traditional LPG.

teamteam
0 / 5 (0 votes)

Share it!

instagramtwitterfacebook

When we use SNG (Propane-AIR)?

Gas plant diagram

most frequently asked questions

1

What is SNG, and where is it applied?

Created with Pixso.
Synthetic Natural Gas (SNG) is a gas obtained by blending air with any gas or gas mixture, having a calorific value equal to the calorific value of methane. Information on blending Liquefied Petroleum Gas (LPG) with air is presented on our website. SNG is used to replace natural gas in industrial enterprises, gas power plants, and is applied for the gasification of settlements (cities, districts, villages). SNG can also be referred to as gas containing methane (CH4), obtained through coal gasification. Bio-SNG can be called gas containing methane, obtained through biomass gasification or biogas recovered from landfills, but bio-SNG can also be referred to as gas obtained in the process of blending bio-LPG with air.
3

What is the cost of SNG system and how to choose the equipment?

Created with Pixso.
To select the appropriate equipment and estimate costs, four main parameters need to be considered: 1. Maximum flow of SNG or natural gas per hour in normal cubic meters (Q = ? Nm3/h or MMBTU/h). 2. Gas pressure at the connection point (P = ? from 0.035 to 10 bar or from 0.5 to 145 psi). 3. Required calorific value of the gas (heat of combustion), for example, for natural gas 8,900 kcal/m3 (1000 BTU/Cu.Ft.), but some facilities in the European Union may use nitrogen-enriched gas, and its calorific value may be 5,260 kcal/m3 (22.0 Mj/m3). 4. Propane and butane ratios in LPG gas, for example, 60% propane and 40% butane. 5. The installation costs of SNG systems are several times lower than the installation costs of LNG for industrial enterprises. Please leave us your request on our website with the above-mentioned parameters, and we will send you an offer for connecting the SNG system.
2

What is SNG blender (LPG Air Blender)?

Created with Pixso.
SNG-blender, is a device where LPG (liquefied petroleum gas) and air are automatically mixed under high pressure in the required ratio, producing SNG gas (synthetic natural gas) with properties similar to natural gas (NG). The SNG-blender is characterized by its precision, automated gas mixing process, and a broad range of adjustments for calorific value and pressure.
4

(BioLPG) BioPropan, bioDME - what is it? Can BioLPG be used for transportation?

Created with Pixso.
BioLPG, also known as BioPropan, is a type of gaseous fuel that is identical in composition and chemical properties to traditional liquefied petroleum gas (LPG) but is produced from organic materials or waste. The BioLPG production process may involve processing various organic raw materials such as sewage sludge, agricultural residues, sawmill waste, and even bioethanol or the synthesis of renewable hydrogen and carbon dioxide. Currently, BioLPG finds practical application in gas supply systems in the United Kingdom. One of the interesting technologies is the production of DME, which stands for dimethyl ether, a gas similar to propane. DME can serve as both a finished product and an intermediate raw material for the production of biopropane. Its main source of production is the dehydration of methanol. Various raw materials are used for production, including biomass, waste, wood, agricultural products, as well as fossil fuels such as gas and coal. DME can be blended with LPG in proportions of 20% for household purposes (heating and cooking) and 25% - 30% for transportation purposes.
1

What is SNG, and where is it applied?

Created with Pixso.
Synthetic Natural Gas (SNG) is a gas obtained by blending air with any gas or gas mixture, having a calorific value equal to the calorific value of methane. Information on blending Liquefied Petroleum Gas (LPG) with air is presented on our website. SNG is used to replace natural gas in industrial enterprises, gas power plants, and is applied for the gasification of settlements (cities, districts, villages). SNG can also be referred to as gas containing methane (CH4), obtained through coal gasification. Bio-SNG can be called gas containing methane, obtained through biomass gasification or biogas recovered from landfills, but bio-SNG can also be referred to as gas obtained in the process of blending bio-LPG with air.
2

What is SNG blender (LPG Air Blender)?

Created with Pixso.
SNG-blender, is a device where LPG (liquefied petroleum gas) and air are automatically mixed under high pressure in the required ratio, producing SNG gas (synthetic natural gas) with properties similar to natural gas (NG). The SNG-blender is characterized by its precision, automated gas mixing process, and a broad range of adjustments for calorific value and pressure.
3

What is the cost of SNG system and how to choose the equipment?

Created with Pixso.
To select the appropriate equipment and estimate costs, four main parameters need to be considered: 1. Maximum flow of SNG or natural gas per hour in normal cubic meters (Q = ? Nm3/h or MMBTU/h). 2. Gas pressure at the connection point (P = ? from 0.035 to 10 bar or from 0.5 to 145 psi). 3. Required calorific value of the gas (heat of combustion), for example, for natural gas 8,900 kcal/m3 (1000 BTU/Cu.Ft.), but some facilities in the European Union may use nitrogen-enriched gas, and its calorific value may be 5,260 kcal/m3 (22.0 Mj/m3). 4. Propane and butane ratios in LPG gas, for example, 60% propane and 40% butane. 5. The installation costs of SNG systems are several times lower than the installation costs of LNG for industrial enterprises. Please leave us your request on our website with the above-mentioned parameters, and we will send you an offer for connecting the SNG system.
4

(BioLPG) BioPropan, bioDME - what is it? Can BioLPG be used for transportation?

Created with Pixso.
BioLPG, also known as BioPropan, is a type of gaseous fuel that is identical in composition and chemical properties to traditional liquefied petroleum gas (LPG) but is produced from organic materials or waste. The BioLPG production process may involve processing various organic raw materials such as sewage sludge, agricultural residues, sawmill waste, and even bioethanol or the synthesis of renewable hydrogen and carbon dioxide. Currently, BioLPG finds practical application in gas supply systems in the United Kingdom. One of the interesting technologies is the production of DME, which stands for dimethyl ether, a gas similar to propane. DME can serve as both a finished product and an intermediate raw material for the production of biopropane. Its main source of production is the dehydration of methanol. Various raw materials are used for production, including biomass, waste, wood, agricultural products, as well as fossil fuels such as gas and coal. DME can be blended with LPG in proportions of 20% for household purposes (heating and cooking) and 25% - 30% for transportation purposes.